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Proximal Minimization Algorithms
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Department of Operations Research
Naval Postgraduate School
Monterey, California 93943
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Abstract

This paper examines a class of proximal minimization algorithms in which the ob-
jective function of the underlying convex program is approximated by cutting planes.
This class includes algorithms such as cutting plane, cutting plane with line search and
bundle methods. Among these algorithms, the bundle methods can be viewed as a
quadratic counterpart of the cutting plane algorithm with line search, for they both
attempt to decrease the true objective function at every iteration. On the other hand,
the cutting plane algorithm does not explicitly and/or directly attempt to decrease the
true objective function. However, it relies on the monotonicity of the approximating
function to guarantee convergence to an optimal solution. This prompts the question of
whether there exists a quadratic counterpart for the cutting plane algorithm. To provide
an affirmative answer, this paper constructs a new convergent algorithm which resem-
bles, but different from, the bundle methods. Also, to make the relationship between
bundle methods and proximal minimization more concrete, this paper also supplies a
convergence proof for a variant of the bundle methods which utilizes analysis common
to proximal minimization.
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1. Introduction

This paper proposes an application of the proximal minimization algorithm for
the following problem.

D: L(u) = minL(u)
uEU

where L(u) is convex and U is a compact subset of R'. In particular, U is assumed
to be a polyhedral of the form {u : Au < b and u E R-}, where A is a p x m
and b is a vector in RP. To simplify the presentation and motivate applications
to Lagrangian duality and variational inequalities, the objective function L(u) is
also assumed to have the following form:

L(u) = max{f (x) + u g(x)} (1)
zEX

where X is a compact subset of R n, f(x) is a real-valued function on R n , and
g(z) is a vector-valued function mapping R ' to R'. The notation a. b denotes
the usual dot product between two vectors, a and b.

When U is taken to be the (noncompact) set {u : u > 0 and u E Rn}, D is
simply the Lagrangian dual problem of the following nonlinear program:

P: f(x*) = max f(x)

s.t. g(X) > 0
x E X.

Under an additional assumption that there exists an i such that g(i) > 0, the
solution to P can be obtained by solving D with U = {u : 0 < u < M and u E
R m }, where M is sufficiently large.

On the other hand, when f(x) = F(x) x and g(x) = F(x), where F(x) is a
continuous mapping from R' into itself and satisfies, for some a > 0,

(F(u) - F(x)). (u - x) > allu - x112, Vu,; E U,

then
L(u) = max{-F(x). (x - u)}

xEU
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and D becomes

min max{-F(x) . (x - u)} = -max min{F(x). (z - u)).
uEU xEU UEU zEU

Hearn et al. (1984) referred to the problem on the right as the dual of the formu-
lation based on the gap function for the following variational inequality:

Findu*EUsuchthat F(u).(x-u*)_0, VXEU.

For the remainder, it is convenient to simply refer to £(u) as the dual function.

To solve D, the proximal minimization algorithm (see, e.g., Bertsekas and
Tsitsiklis, 1990, Martinet, 1970, and Rockafellar, 1976) generates a sequence of
points in U by the iteration

1= argmin{1(u)+ IIlu - ukI 2 }  k= 1,2,... (2)
uEU 2 ck

where u' is a starting point, denotes the Euclidean norm and Ck is a sequence
of positive numbers with

liminf ck > 0.
k-oo

Although the above iterative process converges to an optimal solution of D, there
is a concern regarding its practicality. Bertsekas and Tsitsiklis (1990) pointed out
in their book that the proximal minimization algorithm requires solutions to a
sequence of problems instead of just one problem. When £(u) is nondifferentiable,
this concern is more acute. Adding the 'proximal' term 9jlju - ukII 2 only makes
the objective function of the problem in (2) strictly convex. So, when £(u) is
nondifferentiable, the objective function in (2) is still nondifferentiable and solving
a sequence of nondifferentiable, but strictly convex, does not appear as attractive
as solving only one nondifferentiable problem that may not be strictly convex.

To make proximal minimization more amenable to D, this paper approximates
£(u) in (2) by the following function:

)(u) Lz u) = max {f(x') + u g(x')}
i=1 ..... k

where x' E X. When x i is chosen appropriately, Lk(u) is simple a maximum of a
finite number of hyperplanes tangential to C(u). These hyperplanes are generally
known as cuts or cutting planes.
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To unify the above scheme with other algorithms that use cutting planes, this
paper describes in the next section a generic algorithm which combines cutting
planes with proximal minimization. From this generic algorithm, three algorithms
from the literature can be derived; they are the cutting plane algorithm, the
cutting plane algorithm with line search and the family of bundle methods. Among
these algorithms, the bundle methods can be viewed as a quadratic counterpart of
the cutting plane algorithm with line search or vice versa, i.e., the latter is a linear
counterpart for the former. This prompts the question of whether there exists a
quadratic counterpart for the (plain) cutting plane algorithm. The results in this
paper provide an affirmative response to the question.

For the remaining, Section 2 formally states the generic algorithm and derives
from it the three algorithms in the literature. Also derived is the new algorithm
which is a quadratic counterpart of the cutting plane algorithm. Section 3 pro-
vides convergent results for the new algorithm. To establish a closer relationship
between proximal minimization and bundle methods, Section 4 provides a conver-
gence proof for a simple version of the latter which is different from those in the
literature and uses analysis common to proximal minimization. Finally, Section 5
concludes the paper.
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2. Classification of Algorithms

To classify and establish relationships among algorithms, we first state a generic
algorithm and then show how it can be specialized to the four algorithms. Three
of the four exist in the literature and the last is new and shown to be a quadratic
counterpart of the cutting plane algorithm.

A GENERIC ALGORITHM

Step 1: Select u' E U. Set k = 1. 1 = u1 and

x = arg max{f() + U " .g(x)}.
rEX

Step 2: Solve the master problem

uk+1 = argminj{Lk(u) + 1- Hu - vk1 2}.
UuEU 2C -

If v k also solves the problem, stop and vk solves D.

Step 3: Solve the subproblem

Xk+1 = arg max{f(x) + uk+1. g(x)}
zEX

Note that £(uk+1) = f(xk41) + uk+l • g(xk+l).

Step 4: Derive vk+l E U from uk+l and vk using some process and/or criteria
(see discussion below). Set k = k + 1 and return to Step 1.

Note that the (master) problem in Step 2 is slightly different from the one in
equation (2) of the previous section. The 'prox-center' in the proximal term is vk
for the master problem and it is uk for the problem in (2). In addition, the master
problem in Step 2 can be stated as

MP: min w + -lu- vkll

s.t.

w > f(x i)+u.g(xi) i=l,...,k

.4u < b

6



where the first k constraints are generally referred to as cuts or cutting planes.
The dual of MP can be written as

MD: max-L-lGr + A'A12 + (G'vk + ]) ir + (Avk - b)A2'
k

s.t. = 1

;~ > 0, i=l,...,k

Aj > 0 j=l,...,p

where f denotes a vector in Rk with f(x') as its components, G denotes a m x k
matrix with g(x i ) as its columns, ,, are the dual variables corresponding to the
cutting plane constraints and Aj are dual variables corresponding to the con-
straints defined by the matrix A. In any case, both the master problem and its
dual can be solved in a finite number of iterations. Pang (1983) and Lin and
Pang (1987) reviewed a large number of algorithms applicable to both MP and
MD. More specifically, Kiwiel (1991) designed a dual algorithm to solve MiP and
Bertsekas (1982) proposed an efficient algorithm designed especially for convex
programming problems with simple constraints such as those in MD.

Below, we describe four specializations of the generic algorithm. They are
the cutting plane algorithm, the cutting plane algorithm with line searches, the
bundle methods and a new algorithm called the proximal minimization algorithm
with cutting planes.

The cutting plane (CP) algorithm: The generic algorithm reduces to the
CP algorithm when ck = so and vk +l = ?Ik+' V k. First. setting ck = cc makes
the proximal term vanishes from the objective function of the master problem in
Step 2, thereby reducing it to the following linear program:

ML: min w

s.t.
W > f (x' ) + u g ( x i )  il.,k

Au < b

Without the proximal term and always setting vk+l = uk+ 1 , the variable v be-
comes superfluous and can be eliminated from the algorithm entirely. This reduces
Step 4 to simply increment k by one. It can be shown that the stopping rule in

7



Step 2 of the generic algorithm is equivalent to the one typical for the CP algo-
rithm which is to stop when £(u k+1) = L'(uk+l ) in Step 3.

The CP algorithm was first introduced by Cheney and Goldstein (1959) and
Kelly (1960). Dantzig and Wolfe (1960) developed a related algorithm called the
column generation technique in the context of decomposing large scale linear pro-
grams. Column generation was later generalized to solve Lagrangian dual prob-
lems for mathematical programs (see, Dantzig, 1963 and Magnanti et al.,1976)
and was given the name generalized linear programming technique. Regardless of
the terminology, it is well known (see, e.g., Dantzig, 1963, Magnanti et al., 1976
and Zangwill, 1969) that the convergence of the CP algorithm follows from the
monotonicity of the sequence {wk) or {Lk-(u')1. However, the corresponding
sequence of dual function values, {c(uk)} is not necessarily monotonic. Therefore,
the CP algorithm is a variant of the generic algorithm which has a linear master
problem and does not attempt to descend the dual function.

The cutting plane algorithm with Line Search (CPLS): In an effort to
force the CP algorithm to descent the dual function, Hearn and Lawphongpanich
(1989b & 1990) added a line search step. CPLS can be obtained from the generic
algorithm by setting ck = oo for all k and, in Step 3, letting

vk+1 = arg min {C(uk + A(uk+ - )

where Ap = max{A : vk + A(uk+l - tk) E U . Thus, vk+l minimizes C(u) along
the direction dk - Uk+ 1 - vk. Hearn and Lawphongpanich (1989a) showed that,
if C(u) is differentiable at vk, then dk is a descent direction and C(vk+') < qtvk).

Therefore, CPLS is a variant of the generic algorithm which has a linear master
problem and attempts to descend the dual function, i.e., a descent is guaranteed
whenever the dual function is differentiable at the current iterate, vk.

The bundle methods: As in CPLS, the main thrust of the bundle methods,
first introduced by Lemarechal (1974. 1975) and Wolfe (1975), is to generate a
monotonic sequence of dual function values. From the generic algorithm, one can
obtain a version of the bundle methods by setting ck < oc for all k and, in Step
3, letting

k uk+i if £(uk+l) + m(Lk(vk) - L'(uk+l)) £(vk)

k= v otherwise

8



where m E (0, 1). Other methods for determining vk+i exist and they can be
found in, e.g., Auslender (1987), Fukushima (1984), Gaudioso and Monaco (1982),
Kiwiel (1985 & 1989), Lemarechal (1989) and Mifflin (1977). Also, note that
updating vk+' is in essence choosing the prox-center for the next iteration.

Several authors (e.g., Fukushima, 1984, Kiwiel, 1989 and Lemarechal, 1991)
have observed the similarity between proximal minimization and bundle methods.
However, it is interesting that the developments of the two types of algorithms
appear different. In an effort to unify the development of bundle methods and
proximal minimization, Section 4 provides a convergence proof for a simple method
for updating vk+i which is different from. but related to, the one shown above.

When vk +1 = uk+i, the kth iteration is called a 'serious' step. Otherwise
(i.e., v k+1 = t~k), it is called a 'null' step. So, after every serious step, the dual
function decreases and bundle methods change the prox-center. Since Ck < oo, the
master problem for the bundle methods is quadratic (see problem MP or AID).
Therefore, any bundle method can be considered as a quadratic counterpart of
CPLS since it has a quadratic master problem and attempts to descend the dual
function, in that it decreases the dual function at every serious step. To emphasize
the fact that bundle methods are variants of the generic algorithm, we also refer
to them as proximal minimization algorithms with subgradient bundles (PMSB).

A Proximal minimization with cutting planes (PMCP): Setting ck <
oo and always letting vk+l = uk+i in Step 3 produces a variant of the generic
algorithm which has a quadratic master problem and does not attempt to descend
the dual function. Note the PMCP is similar to the bundle methods because
both have a quadratic master problem; however, it is different because it changes
the prox-center after every iteration instead of after a serious iteration. In the
framework of the generic algorithm, PMCP is a quadratic counterpart of the
cutting plane algorithm, for they both do not attempt to descend the dual function
and one has a linear master problem and the other, quadratic.

As mer.tioned earlier, the convergence of the CP algorithm does not require
any monotonicity of the dual function vaiues. On one hand, it is curious that
an algorithm can converge without any attempt to decrease the dual function
directly. On the other hand, the convergence of the CP algorithm confirms that
decreases in the cutting plane approximating function sufficiently insures that the
dual function eventually converges (not necessarily in a monotonic manner) to

9



the optimal value. The convergence proof for PMCP in the next section further
corroborates this hypothesis.

Table 1 below summarizes the relationships among the four algorithms which
use cutting planes to approximate the objective function. Recall that the ph-ase
'attempt to descend the dual function' is to indicate that, although none of the
four algorithms guarantees a decrease in the dual function at every iteration,
some make an attempt to decrease the function in each one. In particular, the
bundle methods only yield a decrease at every serious step and CPLS yields one
whenever the dual function is differentiable. Nevertheless, all is proven to converge
to a solution of D.

Attempt to Descend the Dual Function

Master Problem Yes No

Linear (ck = oc) CPLS CP

Quadratic (ck < 0c) Bundle methods or PMSB PMCP

Table 1: Classes of algorithms which use cutting planes

10



3. Convergence of PMCP

Below, we restate more concisely the generic algorithm as specialized to the prox-
imal minimization algorithm with cutting planes.

A PROXIMAL MINIMIZATION ALGORITHM
WITH CUTTING PLANES (PMCP)

Step 1: Select u' E U. Set k = I and

X 0 =marma{f(x) + u1• g(r)}.
0 EX

Step 2: Solve the master problem

Uk+1 = argmin{L (u) + INu - u kI 2 ).
uEL 2 Ck

If uk+1 = uk, stop and uk is an optimal solution.

Step 3: Solve the subproblem

X k+1 = argmax{f(x) + uk+1 .g(x) )
xr E X

Increment k by 1 and go to Step 1.

First, note that since vk+ l always equals to uk + l the variable t is not needed
and has been eliminated from 'he above algorithm. Then, recall that in Step 2
Lk(u) is convex and defined previously as

Lk(u) = max {f(x) + u g(x)}.

In Step 3, xk+ j satisfies

L k+(uk+l) = f(Xk+1) + 1k + . g(Xk+l) = £.(uk+J). (3)

The theorem below validates the stopping rule in Step 2.

11



Theorem 1. If uk+l = Uk, then uk+l is an optimal solution to problem D.

Proof: Consider the cutting plane representation of the master problem at the
kh iteration.

mn w + Hju - Uk112
2 ck;

s.t.
W > f(x' ) + u .g(x), i = 1,...,k

Au<b

Then, (wk+1, uk+1), where wk+1 = Lk(uk+l), is an optimal solution. Since uk+l =

uk, it follows from (3) that

wk+1 = Lk(Uk+1) = Lk(uk) = C(uk).

In addition, the KKT conditions are necessary at (wk+ ,u') and there must
exist vector 7r and A satisfying the following equations:

r+ = 0
tEI' jEJ

E' rji = 1

iEl'

7j, A !> 0 Vi E'andjEJ'

where

al = the Jth row of matrix A,

I' = {i: wk+l = f(xi) + uk.g(xi) for =1,...,k} and

= {j :aj . uk = bj for j = 1,...,p.

Since wk+l = £(uk), g(x'), V i E I', are subgradients of £(uk) and

H(g(xi) : i E I') C a.C(uk)

where H(.) denotes a convex hull. Thus, the KKT conditions can be written more
compactly as

0 E OL(uk) + E a3 Aj.
JEJ'

12



However, this is the KKT condition for problem D. Since £(u) is convex and U
is a polyhedron, the condition is sufficient and the proof is complete. C

By the above theorem, if PMCP stops after a finite number of iterations, it
must stop at an optimal solution. When PMCP generates an infinite sequence,
it is sufficient to show that PMCP converges to an optimal solution for the case:
Ck = c > 0 Vk. (This is true because of the assumption that liminfk..., Ck > 0.)
To do so, define the following:

X00 = {x 1 ,x,x 3,...}, i.e., the set of x. generated by Steps I and 3 of PMCP.

[X'] = the closure of X.o. Note that [X-] C X.

L'(u) = maxzE[x'I{f(x) + u g(x)}.

From the above description, it is clear that

Lk (U) <_ L'(u) !_ C(u) for k = 1, 2,...

where the first inequality follows from the fact that {xi : i = 1,..., k} g [X']
and the second inequality from the fact that [X ] C X. Observe also that for
any k

Lk+j(Uk) = (Uk) =f(xk) + uk .g(ck) Vj = 0, 1,2,... (4)

Similarly, since xk E IX-], the following must hold

L'(uk) = 1(uk) V k < -o. (5)

Moreover, {L'(u)}k is a sequence of continuous convex function which converges
pointwise to L'(u). However, since {Lk(u)}k is also monotonic, it must also
converge uniformly to L0"(u) (see, Theorem 7.13 in Rudin, 1976).

To prove convergence and obtain a solution to D, define a sequence {zk}k as
follows: let z' = L£(u l ) and for k = 1,2, 3,... let

k+i _ (u + ') if £(uk+1) + 2cIuk+l - uk1 2 < z
+ z k otherwise

where m E (0, 1). Also, we have from (4) that £(uk+1) = Lk+1(uk+l). So, com-
puting zk requires no extra effort. Next, construct an index set K as follows

IC = {k: zk+l = C(Uk+).l

13



In words, K is the index set of iterations in which there is a sufficient decrease in
the dual function, i.e., by an amount 1 uk+1 - U'11'. The next two results address
the convergence of PMCP which K is an infinite set.

Lemma 2. Let I, be an infinite set. If a subsequence {ukukEK converges to u'
for some K C K, then {uk+l}kEK also converges to u-.

Proof: Consider the sequence {z k}k. By definition, it is a nonincreasing sequence
which is bounded below by £(u*). Thus, {zk}k must converge. Since K C A:, the
following must hold for all k E K

k 1 + M iiU+ ukI 2 < -k
2c

-i U k k1 . -k+1

Taking the limit as k -- oo and k E K yields that
lir i M luk+1 _ k112 = 0.

Since both m and c are positive, {uk+')}, , and {uk} kEK must have a common
limit point, uO. 0

Theorem 3. If C is an infinite set, then every limit point of the sequence {uk}kEK

is a solution to D.

Proof: Let u" be a solution to D and limkK U k = u' for some K C K. Since
uk+1 solves the master problem in Step 2, the following must hold

Lk(uk+l) + IiUk+- uk1 2 < Lk(u) + Ilu _ uk112 V u E U & k. (6)

For any a E (0, 1), setting u = au + (1 - a)uk+l in (6) gives

Lk(uk+l) + _ 11u ak+ - ukjI2 < Lk(au* + (1 - a)uk+1) +
- aU" + (1 -_)uk+l -ukll

2ccLk(uk+1) + lIuk+1 - ukI 2  Qk(U') + (1 - )Lk(uk+l) +

I a(u* - uk) + (1 - a)(Uk+l Uk) 11 2

Lk(uk+1) + _LI uk+l _ uk1 2 < aLk(U*) + (1 - a)Lk(uk+l) +

I ( Ilk(u" - uk)jl + 11(1 - a)(Uk + l - Uk 1))2

14



cLk(u '+) aL'(u*) - Ljuk+l - ukjj2 +

(11o(u" - Uk) + I1(1 - )(u k+ l - u)1)2
2c

aLk(uk+l) _< aC(u*)- LIIuk+ _ uI 112 +

(a(u - k)I + 11(1 - a)(Uk+1 uk)11)(

where the second inequality follows from convexity of Lk(u), the third from tri-
angular inequality and the last from the fact that L (u* ) < C(u*). Since Lj(u) is
continuous for all j = 1, 2,... and, from Lemma 2, 11uk+ 1 - ukjl - 0 for k E K,
there must exist, for any e > 0, a sufficiently large k, such that for any j

IL'(uk+' ) -LI(Uk)l _< ;, Vk E K and k > k,, or,

LJ~ ) - < !j(uk +' ) : _V -Ju)  V k E K and k >/ -j.

Setting j = k and using (3), i.e., Lk(uk) = £(uk). yield the following

(u k ) - < L k (u k + l ) £(u k ) +  , V k E K and k > k.

Combine the left inequality with (7) to obtain that

aC((uk) _ 6) <

aL£(u) - _Ljuk+l - UkI +

l(IIa(u - )II+ 11(1 - -U_ 1 )2 , V k E and k > kl

Take the limit as k o o and k E K and obtain

a(£(u' ) - 6) < at(t-) + Ia(U* - )II
2c

L(u, ) - < C(U*) + CIlu* - Uo1l
2c

£(u, ) - £(u-) < C-Ill(u" - u,)112 + E. (8)

Since (8) holds for any a E (0, 1) and c can be chosen arbitrarily small, it must
be true that

L(U') - C(u*) = 0,

Thus. u' is a solution to D.O

15



An immediate consequence of Theorem 3 is that the entire sequence {uk)kE;C
converges to the optimal solution when D has a unique solution (see, e.g., Bazaraa
and Shetty, 1979).

Consider now the case when K is finite. Define I = max{k : k E K} + 1. Then,

zk =z' Vk >, and

c(Uk+u) + rn IjUk+1 _ Uk112 > zk =Z V > e (9)z:,u+' 2c~c  -

Lemma 4. Let K be a finite set and f be as defined above. Then,

liminf 1Juk+I - ukl 2 = 0.
k>t'

Proof: Assume otherwise, i.e., there exists a 6 > 0 such that

liminf I1 k+1 - U 42 > 6. (10)
k>e

In other words, for a sufficiently large k, > f,

IIUk+l - Ukl42 > 36 Vk > k, (11)- 4

From Theorem 3, setting u = u' in (6) produces the following

Lk(Uk+l) + jU+ - It'l < Lk (uk) V k. (12)

Since {Lk(u)}k converges uniformly to L'(u). there must exist for every E E (0, )2
a sufficiently large k2 such that

IL-(u) L'(zL) 1 :5 Vk>k 2 anduEU, or
4c

L'(u) - < Lk(u)<L'(u)+Tc Vk>k 2 anduEU. (13)
4c -4c

Combining (12) and (13) yields

LO(uk+1) - + I' 1  - ukl 12 _ L°(uk) + - Vk > k2
4c 4c

L' (uk+l)+ cu L Vk> k2
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Using (5), we must have that

£c(Uk+l) + 1i1jluk+I - ukII2 _ _I 5 £C(UI) Vk > k2  (14)2c

However, (11) and (14) imply that the subsequence {C(Uk)}k>k, wherek
max(ki, k2 ), is a monotonically decreasing sequence and bounded below by C1(u*).
Therefore, {1-(uk )lk>k must converge and

lim I jj{IIl _ - £1 = liMrn(Uk+1) _ C2(Uk)) = 0
k>k 2c Ic>k

ur ~k+I _-4

Since c can be chosen arbitrarily small. this contradicts (10). 0

The above lemma implies that there exists a K C {k : k > t } such that

lim Iuk+I - U 2= 0.
kEK

Since U is compact and itk E U for all k, there must also exists a K' C K such
that {u k}kE<' converges to, say, uo". As a consequence, f{Uk+I }kE.': must converge
to u' as wvell.

Theorem 5. If A is inite, then ui' is a solution to D.

Proof: Based on the preceding discussion, there must exist a K C k:k ~
such that the following conditions hold

1. limkEK 1I11k+I _ Ukj42 = 0.

2. {U k }kK--4 U-.

3. {Uk'l )ER' -- U 0.

From Theorem 3, setting u = au" + (1 _ a)Uk+1 in (6) for any a E (0, 1) gives

Lk(uk+1) + _LIjUk+l _ UkII 2 < Lk(ru* + (1 _ a)uk+l) +

± Ilau* + (1 - a)uk+l uk112.
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Using the same argument as in Theorem 3 with the index set K, it can be shown
that

.C(u ) = L(U).(15)

Similarly, setting u = Qu' + (1 - a)uk+i in (6) for any a E (0, 1) gives

Lk(uk+l) + _jts~' 4 - uk ' <_ Lk(aut + (1- a )uk+i) +

71 au, + (1 - a)uk+ l - u k12,

and by the same reasoning it must follow that

£(u') - 1(ut) !_ 0 or C(u') < C(ul). (16)

However, from (9) it is true that

L(uk+l) + -11 -- 1 _- ukl > J. V k > t
2c

Take the limit as k -+ c and k E K and invoke the continuity of £(u) to obtain
that

( > zI = £(u) (17)

Combining (15), (16) and (17) yields
=£(u-) -'Ii = = £!U )

So, ut must be a solution to D.0

In addition to the above convergence results, if f(x) and g(x) are linear func-
tions and X is a bounded polyhedral, then xk+1 in Step 3 can be restricted to
extreme points of X, for which there are finitely many. In which case, there must
exist a sufficiently large f such that Lk(u) = Le(u) V k > £ and u E U. How-
ever, this implies that after f iterations PMCP reduces to the application of the
proximal minimization algorithm to the following linear program:

min w

s.t.

w > f(xi) + u.g(xi) i=,...,

Au<b

Then, it follows from Exercise 4.3 in Bertsekas and Tsitsiklis (1989) that PMCP
terminates finitely when D is the dual of a linear program, or equivalently, C(u)

is piecewise linear.
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4. A Bundle Method

Below, we describe a particular variant of the bundle methods which uses a dif-
ferent scheme for updating vk+ 1 in Step 4 of the generic algorithm. For later
reference, we call this variant a proximal minimization algorithm with subgradient
bundles (PMSB). One intention of this section is to present a convergent proof for
PMSB which uses analysis similar to that of PMCP, thereby making the relation-
ship between bundle methods and proximal minimization more concrete. Also, it
should be noted that some variants of the bundle methods require a line search
step (see, e.g., Fukushima, 1984, Gaudioso and Monaco, 1982 and Kiwiel, 1985).
However, PMSB as stated below does not require any line search.

A PROXIMAL MINIMIZATION ALGORITtM
WITH SUBGRADIENT BUNDLES (PMSB)

Step 1: Select ul E U and m such that 0 < m < 1. Set k = 1,v = u1 and

X =argmax{f(x) + u1 .g(x)}.
zEX

Step 2: Solve the master problem

uk+1 = arg nii{Lk(u) + - Ij- _ k

if uk+i = vk, stop and vk is an optimal solution.

Step 3: Solve the subproblem

x k + = arg max{f(x) + uk+1 . g(x)}
zEX

Note that £(uk+1) = f(xk+ l ) + Uk+1 .9(xk+l).

Step 4: Set

if C(Ukll__+ 1n <I~ku1 _iIII, <
)19 

(18V 
k +

1 - C V(8
V k  otherwise
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Recall that, when vk 1 = uk+l, iteration k is called a 'serious' step or iteration.
Otherwise, (vk+l = v k), it is called a 'null' step. In addition, the updating formula
for v k+l in Step 4 is also related to the one in Section 2 (see also Lemarechal, 1991)
which is

Vk+1 = u k+ 1 if C(uk+,) + m(Lk(vk) - Lk(uk+1)) < £(vk)
vk otherwise

To obtain the relationship, observe that since uk+l is a solution to the master
problem

Zk(uk+ l ) +IiUk+ - vk1 2 < Lk(vk)

1- - k112 < Lk(vk) - Lk(uk+l)

m1 iiuk+l - vk 1 2 < m(L'(Vk) - Lk(uk+l))

,C(uk+l ) + m9llu +' - v'11' < L(Uk+1) + m(Lk(vk) - Lk(uk+l))

So, the updating formula (19) implies (18).

When PMSB terminates finitely, Theorem 1 in the previous section still guar-
antees that vk is an optimal solution to D. Below are convergence results for
the case when the algorithm generates an infinite sequence. As in Section 3, it is
assumed without loss of generality that ck = c > 0, V k, and let

k = { k: v k+i =u +1 }.

So, )C is the index set for the serious steps (iterations).

Lemma 6. Let )C be an infinite set. If a subsequence {vk}kEK converges to v-
where K C C, then {vk+I)kEK also converges to V',.

Proof: Note that the sequence {It, 2 )}1k is a nonincreasing sequence which is
bounded below by (u*). So, {C(vk)}k must converge. Since K C C, the following
must hold

£(vk+l ) + MiiVk+l  - Vk 2 <C(Vk) V k E K

Following the same argument in Lemma 2, it can be shown that

0 = lim m It-1 -v k112
kEI1 2c

Since both c and m are positive, {Vk+llkEr, must converge to v'.0
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Theorem 7. If the cardinality of k is infinite, then every limit point of the
sequence {vkl)kEA is a solution to D.

Proof: Let {vk)kEK be a convergent subsequence where K C 1C. Since v +1 -

uk+1 V k E K and uk+l is optimal to the master problem, the following must hold
Lk(vk+ ' ) + -L tk+1 - ,.,l2  <Lk(u) + _11U - vkl, V ,., U & k K.

Using the same analysis as in Theorem 3 and the result for Lemma 6, it can be
shown that {vk}kEK converges to u*.C

When the cardinality of k is finite, define as before f = max{k : k E K} + 1.
So, every iteration k > I must be a null step and the master problem in Step 2
must have the form:

uk+i = argmax{Lk(u) + - } Vk>

Next, let

Fk(u) = Lk(i) + LIu - L,111 2 , and
F' (u) = L'(u) + 7_1u -,11l.

Then, Fk(u) epi-converges to F'(u) since Lk(u) pointwise and monotonically
converges to L(u). (For the definition and properties of epi-convergence, see,
e.g., the appendix in Wets, 1989.) In addition, it follows from Theorem A.2 of
Wets(1989) that if {uk+l}kEK --* u for some K C {1,2,3...). then

uO = arg min F '(u).
IS EU

Furthermore, since Lk(.) also uniformly converges to L'(-), there must exists,
for any c > 0, a sufficiently large k, such that

ILk(u)-L'(u)I<e VuEUandk>kl,

and by setting u = uk+l

Ik(uk+ )- L ( k+')j <( V Vk> ki
IL k(uk+l) - £ (u k+,)l < V Vk> k,

£(uk+l) <<Lk(Uk+) £(uk+,) + e Vk > k (20)

where the middle inequality follows from (5).
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Theorem 8. If the cardinality of C is finite, then v is a solution to D.

Proof: Since U is a compact set, there must exist a set K C {k : k > 1} such
that {u'+1}kEK converges to u-.

If u00 = vt , then the above observation concerning the epi-convergence of
Fk(u) implies that

= min{L'(uzf + -1u - V '112)
uEL-"

< min{C(u) + -IIu- r'112)- uEL'-"

< L(Z")

where the first equation follows from (5), the third from the observation that
u00 = argminuLT F'(u), the fourth from the fact that L-(u) <_ L(u) V u E U,
and the last from the fact that v is an element of U. Thus,

C(vt) = min{C(u) + 1 u -

uEU2

However, this implies that vi solves D.

Assume that u* 0  t,'. Let 6 = Ilu" - v'l12 . Then. there must exists a
sufficiently large k2 such that

Iuk+l_ ,_,2>"  Vk> k 2 &-EK (21)

However, since uk+1 solves the master problem in Step 2 with vt as its prox-center,

it must be true that

Lk(uk+i) + _1I1uk+1 - vei 2 < Lk(v ' ) = £(v), V k > t,

where the equality follows from (4) in Section 3. For any e > 0, let k, be as in
(20) so that

£(uk+ l ) - e + _uL IUu+ - Vt[ < £(v'), V k > max(f, k1 ).

2c "



Set e - ( and obtain

1 (Uk+ l ) - (1u ' - V'11' - (1 - m) ) <L(v'), V k > max(l, kj).
2c 2

Then, for any k > max(t, ki,k 2) and k E K, (21) implies that

L(Vt) L(Uk~~l) + !( 1 1 kI+1 _ V1112 _( n
> :(u 2) 2c (1 2

>C(Ukl) + 41(llUk+l _ v1112 _ (1 - m)!luk+l - vtl12)

> (u k + l ) + rjUk+1 _

However, this implies that there must be a serious step after iteration t which is
a contradiction. Thus, every convergent subsequence of {uk+l}k>e converges to
ty which is a solution to D. However, this implies that the sequence {uk+l k>1

converges to vt as well. 0

23



5. Conclusion

This paper presents a generic algorithm in the framework of proximal minimiza-
tion. It is shown that this generic algorithm can be specialized to four different
algorithms; they are the cutting plane algorithm, the cutting plane algorithm
with line searches, the bundle methods (or proximal minimization with subgra-
dient bundles, PMSB) and proximal minimization with cutting planes (PMCP).
The first three can be found in the current literature; however, the last one is new.

Besides the obvious relationship that all four algorithms can be derived from
the generic algorithm, other relationships based on the master problem and con-
vergence behavior are also established. Convergence proofs for PMSB and PMCP
are also given.
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